
Ryusuke KONISHI
NTT Cyberspace Laboratories

NTT Corporation

� NILFS Introduction
� File System Design
� Development Status
� Wished features & Challenges

2Copyright (C) 2009 NTT Corporation

� NILFS is the Linux file system supporting “continuous
snapshotting”
üProvides versioning capability of entire file system
üCan retrieve previous states before operation mistake
 even restores files mistakenly overwritten or destroyed

just a few seconds ago.
üMerged into the mainline kernel 2.6.30

3Copyright (C) 2009 NTT Corporation

Hardware
failure

59%

Human error
26%

Software
malfunction

9%

Viruses
4%

Natural disaster
2%

CAUSE OF DATA LOSS

Source: Ontrack Data Recovery, Inc.
Including office PC. The data is based on actual
data recoveries performed by Ontrack.

4Copyright (C) 2009 NTT Corporation

Mostly preventable with basic
high-integrity system
(Redundant configuration)

Unprotected by
redundant drives.

Copyright (C) 2009 NTT Corporation 5

ISSUES IN BACKUP

Hard drive Backup

Restoration is cumbersome
(and often fails or unhelpful)

� Changes after the last backup are not safe
� But, frequent backups place burden on the system as well as

the interval is limited by the backup time.

Discretely scheduled
e.g. per 8 hours, per day

Backup

Backup

Some applications (esp. for system software)
are sensitive to coherency among files

Incrementally done

� Adopt Log-structured File System approach to continually
save data on disk.

� Checkpoints are created every time user makes a change,
and each checkpoint is mutable to snapshots later on.

Copyright (C) 2009 NTT Corporation 6

B

E
A→B→C→

D→E→F

NILFS

A
CP

Ordinary file systems

Previous data is
overridden

Backup

ex.
per 8 hours Previous data is

preserved on disk

Accessible
any time

B
CP

C
CP

D
CP

E
CP

F
CP

Instantly
taken

Copyright (C) 2009 NTT Corporation 7

File System
(solution)

Maximum
Number of
Snapshots

Instant
Snapshotting

Writable
Snapshots

Retroactive
Snapshots

Incremental
Backup

NTFS
Volume

Shadow Copy
64

Optional
Third party

product

ZFS Unlimited*1 √ √ √

Btrfs Unlimited*1 √ √ Planned

NILFS2 Unlimited*1 √ √ Requested

Apple Time
Machine

Thinned out
automatically

― √

CDP Unlimited*1 ― ― ― √

*1: No practical limits (bounded by disk capacity)

Backup
Solutions

� Only modified blocks are incrementally written to disk
üThis write scheme is applied even to metadata and intermediate blocks

Copyright (C) 2009 NTT Corporation 8

A A

Application view:

File A (modified)
A’

A

B
File B (appended)

B’

B

On disk images: B-Tree intermediate blocks

Metadata blocks (inodes, …)

A B A’ B’

modified blocks

Original blocks are not overridden

Copyright (C) 2009 NTT Corporation 9

Super blocks

Super root block

DATSUFILECPFILE
checkpoint
information

Segment
usage

Disk block
address

translation

IFILE
contains
Inodes

cno=100
cno=101

cno=102
cno=103

cno=104
cno=105

Files, Directories, Symbolic links

ino=123 ino=124 ino=125 ino=126

Inode

Block mapping (B-tree)
Node blocks

Data blocks

3
x255

x255

Intermediate
blocks *1

*1 B-tree depth varies with the
number of data blocks

Copyright (C) 2009 NTT Corporation 10

� Segments
ü Disk space is allocated or freed per segment
ü Each segment is filled with logs

� Logs
ü Organize delta of data and metadata per file
ü Compose a new version of metadata hierarchy every checkpoint

Super
block

0

Super
block

1 2 3 N-1 N

Segments Logs

Super Root
Block

DATSUFILECPFILEIFILEfile-A file-B file-C file-D

Summary blocks (per log)Data blocks B-tree nodes

Metadata files

(Changed blocks only)

� How does NILFS recover from unclean status?
üFinds the last log which has a super root block, and done!
üEach log is validated with checksums

11Copyright (C) 2009 NTT Corporation

log

Super block

log log log log

Super root block
to be chosen

Summary
block

next segment next segment next segment

The super block points to the most recent log.
The pointer is periodically updated.
The super block points to the most recent log.
The pointer is periodically updated. incomplete series of logs *1

is ignored
incomplete series of logs *1

is ignored

*1 Series of logs may not have the super root block. This type of variant is allowed for optimizations
to make synchronous write operation faster.

Scan order of logs

SS

� Creates new disk space to continue writing logs
ü Essential function of Log structured File Systems

� A disk block is in-use if it belongs to a snapshot or recent
checkpoints; unused blocks are freed with their checkpoints

CP
CP

CP
CP

CP

CP
SS

CP
CP

Copyright (C) 2009 NTT Corporation 12

CP

Protection
period

Preserving checkpoints as snapshots

CP
CP

CP

Not all unprotected
checkpoints will be
deleted in a shot of GC

Not all unprotected
checkpoints will be
deleted in a shot of GC

A checkpoint which user
marked as SNAPSHOT
A checkpoint which user
marked as SNAPSHOT

Recent checkpoints Recent checkpoints

Cleanerd
(Standalone daemon)

Copyright (C) 2009 NTT Corporation 13

Overall view

CPFILESUFILE DAT GC cache

Userland

Kernel

segment usage information

checkpoint information

Virtual block address
information

S L DL L

On disk

S LDL LD SD

Live blocks Dead blocks

Log writer

execute GC

Segment 101 Segment 102 Segment 103 Segment 1000 Segment 1001

LLS S L L L L

ioctl()

Log summary

L L L L

� Issue for moving disk blocks
ü Must rewrite b-tree node blocks and inodes having a pointer to moved blocks
ü Disk blocks are pointed from many parent blocks because NILFS makes

numerous versions

� Solution
ü Use virtual (i.e. indirect) block numbers instead of real disk block numbers

Copyright (C) 2009 NTT Corporation 14

File offset
(per block)

Virtual Block
Number

Disk Block
Number

Block
mapping

Disk Address
Translation

offset=256 vblocknr=1235 blocknr= 10002

block addressing

Example.

B-tree lookup

DAT File
4000

10002

Table reference

Extra lookup is needed
but DAT is cached as a file
Extra lookup is needed
but DAT is cached as a file

#1234

#1235

� Cleanerd determines if each disk block is LIVE or DEAD from DAT

Copyright (C) 2009 NTT Corporation 15

Live or dead determination

DAT

vblocknr=1235

vblocknr=1440

le64 start
200

le64 end
300

le64 start
300

le64 end
500

vblocknr
1234

cno
120
cno
120

cno
280
cno
280

cno
2

cno
2

Snapshots Recent checkpoints

vblocknr
1440

cno >= 800

vblocknr
1235

le64 start
300

le64 end
1000

vblocknr=1234
200 < 280 < 300

Summary
Block(s)

Log

Virtual Block Numbers

Virtual block numbers of the payload blocks
are written in the summary
Virtual block numbers of the payload blocks
are written in the summary

300 < 800 < 1000

DEAD

LIVE!

LIVE!

� Achievements
üSnapshots
 Automatically and continuously taken
 Mountable as read-only file systems
 Mountable concurrently with the writable mount

(convenient for online backup)
 Quick listing
 Easy administration

üOnline disk space reclamation
 Can maintain multiple snapshots

16Copyright (C) 2009 NTT Corporation

� Achievements
üOther Features
 Quick recovery on-mount after system crash
 B-tree based file and meta data management
 64-bit data structures; support many files, large files and

disks
 Block sizes smaller than page size (e.g. 1KB or 2KB)
 Redundant super blocks (automatic switch)
 64-bit on-disk timestamps which are free of the year

2038 problem
 Nano second timestamps

17Copyright (C) 2009 NTT Corporation

� Todo
üOn-disk atime
üExtended attributes (work in progress)
üPOSIX ACLs
üO_DIRECT write
 Currently fallback to buffered write
üFsck
üResize
üQuotas

� Performance issues
üDirectory operations
üWrite performance
üOptimization for silicon disks (esp. for SSD)

18Copyright (C) 2009 NTT Corporation

Copyright (C) 2009 NTT Corporation 19

0

20

40

60

80

100

120

140

160

180

initial
create

create patch compile clean read
tree

delete
tree

stat
tree

Ext3

Btrfs

Nilfs2

Fa
st

Sl
ow

Compilebench (kernel 2.6.31-rc8)

Hardware specs:
Processor: Pentium Dual-Core CPU E5200 @ 2.49GHz, Chipset: Intel 4 Series Chipset + ICH10R, Memory: 2989MB, Disk: ST3500620AS

A
vg

. M
B/

se
c

Under investigation.
Applying ext3 hash tree or b-tree based
directory management is discussed
in the NILFS community.

Under investigation.
Applying ext3 hash tree or b-tree based
directory management is discussed
in the NILFS community.

Copyright (C) 2009 NTT Corporation 20

0

20

40

60

80

100

120

seq write seq rewrite seq read

Ext3

Btrfs

Nilfs2

Fa
st

Sl
ow

Bonnie++ (kernel 2.6.31-rc8)

Hardware specs:
Processor: Pentium Dual-Core CPU E5200 @ 2.49GHz, Chipset: Intel 4 Series Chipset + ICH10R, Memory: 2989MB, Disk: ST3500620AS

Th
ro

ug
hp

ut
M

B/
se

c

Implementation needs to be
brushed up, especially in
log-writer and b-tree.

Implementation needs to be
brushed up, especially in
log-writer and b-tree.

� Faster and robust online backup like ZFS
ü Back up checkpoints instead of usual files
ü Similar features are planned for btrfs, TUX3, and the Device Mapper

(dm replication)

Copyright (C) 2009 NTT Corporation 21

CP
CP

CP
CP

CP

CP

NILFS Drive Passive (possibly unmounted)
NILFS Drive

CP
CP

CP
CP

CP
CP

Replicator
(reader)

ssh connection

The reader extracts delta between
two checkpoints and streams it
over the network

The reader extracts delta between
two checkpoints and streams it
over the network

Replicator
(writer)

The writer appends the delta
to a passive NILFS partition
The writer appends the delta
to a passive NILFS partition

� How to extract delta between two checkpoints ?
üTwo approaches
 Scan logs in creation order (just gets delta from logs)
 Scan DAT to gather blocks changed during given period

üHave pros and cons
 The former seems to be efficient, but has a limit due to GC.
 Replicator may use either or both of these methods

� Rollback on the destination file system
üNeeded before starting replication especially to thin out the

backups with GC

Copyright (C) 2009 NTT Corporation 22

KEY CHALLENGES DISCUSSED IN THE NILFS COMMUNITY

� Better garbage collector is much needed
üBetter data retention policy to prevent disk full
üSelf-regulating speed
üSmarter selection algorithm of target segments to reduce I/O

� Further chance of optimization and enhancement
üBackground data verification
üDefragmentation
üDe-duplication
üBackground disk format upgrade

Copyright (C) 2009 NTT Corporation 23

� NILFS is in the mainline kernel
üYou can go back in time just before you scream “ ”
üInstant failure recovery. Simple administration.
üPotential for innovative application
ü… and most importantly, WORKING STABLY :)

� Contribution is welcome
üVarious topics in GC, snapshot tools, and time-oriented tools.
üLet’s drop the (EXPERIMENTAL) flag!

24Copyright (C) 2009 NTT Corporation

� Project page
ühttp://www.nilfs.org/

� Mailing-list
üusers (at) nilfs.org
üusers-ja (at) nilfs.org

� Contact Information
üRyusuke KONISHI <ryusuke (at) osrg.net>

25Copyright (C) 2009 NTT Corporation

26Copyright (C) 2009 NTT Corporation

