Utilizing NILFS2 Fine-grained Snapshots

Ryusuke KONISHI

NTT Cyberspace Laboratories
NTT Corporation

Outline

- Nilfs2 overview
- Fine-grained Snapshots Why?
- Use-case scenario and applications
- Work in progress on Snapshots
- Current status and future plan

NILFS2 Overview

- A mainlined filesystem (since kernel 2.6.30)
- A log-structured filesystem
 - Filesystem itself is a big journal
 - Ensure consistency and quick recovery from unexpected power failure.
- Stand for fine-grained and "any time" snapshots
 - Creates a number of checkpoints every time user makes a change.
 - Can change arbitrary checkpoints into snapshots later on.
 - Snapshots are concurrently mountable and accessible.

Fine-grained Snapshots - Why?

 Backup is necessary to prevent data loss, but it still accompanies inconvenience and pain.

CAUSE OF DATA LOSS

Solution with NILFS

- Buffer filesystem history in disk.
 - User can even restore files mistakenly overwritten or destroyed just a few seconds ago.

Disk write in NILFS

- Only modified blocks are incrementally written to disk (in CoW)
 - Even for metadata and B-tree intermediate blocks as well as data.

Garbage Collection

- Creates new disk space to continue writing logs (essential for LFS)
- NILFS2 employs a unique GC which can reclaim disk space keeping selected checkpoints.
 - This makes checkpoints long-term storable in arbitrary granularity that user demands.

Command Line Programs

Tools are included in nilfs-utils (or nilfs-tools for Debian/Ubuntu) package

Snapshot management programs

```
$ 1scp
      CNO
                 DATE
                                           NBLKINC
                          TIME MODE FLG
                                                         ICNT
        1 2011-05-08 14:45:49
                                            200523
          2011-05-08 14:50:22
                                                          81
        3 2011-05-08 20:40:34 cp
                                               136
                                                          61
        4 2011-05-08 20:41:20
                                            187666
                                                         1604
        5 2011-05-08 20:41:42 cp
                                                        1634
                                                51
        6 2011-05-08 20:42:00 cp
                                                37
                                                        1653
        7 2011-05-08 20:42:42 cp
                                            272146
                                                         2116
        8 2011-05-08 20:43:13 cp
                                            264649
                                                        2117
        9 2011-05-08 20:43:44 cp
                                            285848
                                                        2117
       10 2011-05-08 20:44:16 cp
                                            139876
                                                         7357
```

Copyright (C) 2011 NTT Corporation

Use-Case Scenario

Casual data protection

 Prevent data loss against operation mistake, even if you have NOT taken snapshot.

Versioning

Make change history on files browsable.

Tamper detection and recovery

Filesystem itself preserves full-time and overall range of change history
 track changes using the filesystem.

Upgrade / Trouble shoot

 Can revert system state against unexpected troubles. NILFS does not need taking a snapshot before every upgrade nor conf-file editing.

TimeBrowse Project

A GNOME Nautilus extension applying NILFS

Allow browsing change history of documents and restore its arbitrary version.

http://sourceforge.net/projects/timebrowse

Snapshot Appliance

Example: in-house shared storage server

- Files are restorable even if other users edited or deleted (like Wiki).
- Seamlessly accessible from Windows clients.
- We actually have one and a half years operation record.

Tamper Detection

Fine-grained snapshots

- Can closely track the evidence of intrusion and tampering after the fact, as well as their progress.
- Quick and accurate restoration from the local disk.

Development Focus

Establish fine-grained snapshots and make it ready for use

- Efficient delta extraction, restoration, de-dupe.
- Data security (e.g. shredding), anti-tampering.

WIP - Snapshot diff (1/4)

- Problem (user's demand)
 - It takes too long to find out changes on filesystem for thousands of snapshots. Users want to shorten the time:
 - Incremental remote backup
 - Search index rebuild
 - Tamper detection

Current effort

 Proposing experimental API which quickly looks up changed inodes between two checkpoints.

WIP - Snapshot diff (2/4)

Approach

 Compare b-trees of "ifile" (metadata storing NILFS2 inodes), then scan modified inodes in the ifile blocks whose disk addresses differ.

WIP - Snapshot diff (3/4)

- API (testbed)
 - NILFS_IOCTL_COMPARE_CHECKPOINTS
 - Acquire inode numbers of modified inodes.
 - NILFS_IOCTL_INO_LOOKUP
 - Lookup pathname of the inodes by inode number.
 - Implementing this ioctl has impact on disk format, and also hard links are not handled at present.
- Command line tool

WIP - Snapshot diff (4/4)

Time required to compare two directories/snapshots containing linux-2.6.39 source code that one file differs

Comparison method	Time (seconds)	
diff:1 -Nqr snapshot-a/ snapshot-b/	56.5 x 209 f a	ster
diff:2 -Nqr snapshot-a/ snapshot-b/	10.2 x 38	faster
nilfs-diff	0.27	

- diff:1 -- modified diff which does not skip comparison even if device numbers and inode numbers equal.
- diff:2 -- optimized diff which skips comparison if inode numbers and ctimes equal.

Hardware specs: Processor: Xeon 5160 @ 3.00 GHz x 2, Memory: 7988MB, Disk: IBM SAS SES-2

WIP - Revert API (1/4)

- Problem (user's demand)
 - Recovery may fail due to disk space shortage because each file is copied.
 - Restoring many files or media files takes time, which also leads to availability loss in business systems.
 - Recovery of large user data
 - Recovery against system upgrade failures
 - Recovery from tampering

Current effort

Recovery of past data without duplication.

WIP - Revert API (2/4)

Approach (preliminary)

- Deleted block of NILFS is not actually discarded; just its lifetime is marked ended.
- Revive blocks that we want to recover, and reuse them.

WIP - Revert API (3/4)

- API
 - in preparation -- Is it reflink?
- Command line tool (testbed)

nilfs-revert [options] source-file file-to-be-reverted

WIP - Revert API (4/4)

Time and disk space required to recover a 2GiB size file

Restore method	Time (seconds)	Capacity growth (GiB)
ср	84.6	2.04
nilfs-revert	1.1	0.016

0.8% overhead comes from update of 32 bytes metadata per disk block

Hardware specs: Processor: Xeon 5160 @ 3.00 GHz x 2, Memory: 7988MB, Disk: IBM SAS SES-2

Current Status

- Not so many enhancement for the kernel code.
 Only noticeable changes are:
 - Online resize, fiemap, discard, and performance tuning, etc.

Advancement in userland support

- Now bootable from GRUB2
- util-linux-ng (libblkid) recognizes NILFS2 partitions.
- Palimpsest/udisks (GUI disk utility), parted, and so on.

nilfs-utils 2.1

Contains resize tool and easy-to-use GC tool/library.

TODO items / Future Plan

- Snapshot diff and revert API
- Efficient remote replication and restoration
- Security
 - Past file shredding
 - Transient vulnerability frozen in snapshots
- Remaining essential features
 - Extended attributes, POSIX ACL
 - Fsck
- Performance improvement
 - Log writer, GC, directory lookup, inode allocator, etc...
 - Fast and space-efficient caching of inodes and data pages against many snapshot mounts
- Kernel space Garbage Collector

Questions?

We welcome your contributions

- Mailing-list
 - linux-nilfs linux-nilfs (at) vger.kernel.org>
- Project information
 - http://www.nilfs.org/
- Development tree
 - git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke/nilfs2.git

Thank you for listening!