
the Nilfs version 1: overview

Nilfs team
NTT Cyber Space Laboratories

NTT Corporation
http://www.osrg.net/nilfs/

nilfs@osrg.net

1 Introduction

To enhance reliability of the Linux file system, we
adopted a Log Structured File System (LFS)[1]. In the
past, the advantages of LFS were high write perfor-
mance and faster recovery time. In addition, LFS pre-
vents data write operations from overwriting the disk
blocks, thereby minimizing damage to the file data and
file system consistency and avoiding a hardware failure.
Furthermore, LFS writes data and meta-data in the cor-
rect order, which helps ensure file system consistency.
The position of the writing blocks are evenly distributed
around the disk, thus reducing the possibility of a disk
hardware failure. LFS can create a snapshot of the file
system immediately and makes the system user friendly.

Presently, we are developing the Nilfs (the New Im-
plementation of a Log-structured File System) as a ker-
nel module in Linux 2.6.

2 the Goal of the Nilfs

The goals of the Nilfs are as follows.

1. Respect Linux semantics
2. Avoiding modifications to the kernel code

This simplifies Nilfs installation and following up a
frequent version rise of the Linux kernel speedy.

3. Getting high reliability, availability and operability
For example, the file systems are reliable, like
DBMS, and immediately takes its snapshot.

4. High performance and scalability
5. Adapting the distributed file system or the cluster

system
6. Being user friendly

It reduces the possibility of human errors.

We also included our future work in this development
goal. From these, we set guaranteed high reliability and
availability as our main goals.

3 the Log Structured File System

The LFS writes all modifications to the disk sequentially,
no blocks are overwritten, and log-like structures are ap-
pended to the disk instead. Meta-data, such as file in-
odes and indirect blocks are written to newly allocated

blocks. In LFS, data writing does not break any exist-
ing disk blocks on system failure such as power down.
A new disk block address is assigned to the data on the
memory buffer cache during write operations. The as-
signments are in the following order; file data, file data
indirect blocks, inode blocks, and inode indirect blocks.
This order is important for maintaining the consistency
of the file system structure. Write operations are also
performed in this order, without having to seek the disk
head.

The write position is contiguous and stable, and the
file system check (fsck) process only inspects a small
area of the disk.

Because disk capacity is limited, we need a “garbage
collection” service (or cleaner) to collect deleted file
blocks and logically overwritten blocks. Garbage collec-
tion is a major overhead of LFS. However, the garbage
collector can efficiently restore fragmented file blocks.
For efficient garbage collection, whole disk is divided
into fixed sizes (ex. 4 mega bytes). This management
unit is called a full segment. Writing out is done sequen-
tially in full segments.

4 Nilfs Disk Layout
In Nilfs, our design goals are to obtain high reliability
and availability of the file system. We have not yet begun
performance tuning. However, to be able to use the Nilfs
in the future, the file size and inode numbers are stored in
64-bit-wide fields, and file blocks are managed by a B-
tree[2][3]. The root of the file block B-tree is placed on
the inode structure. The inode is managed by the inode
block B-tree, the root of the inode block B-tree is stored
in the superblock structure of the file system.

In this section, we will first show the layout of the
whole disk, and then explain the management structure
of file blocks.

4.1 Disk Layout
The disk layout of Nilfs is shown in Figure 1, divided
into several parts.

superblock Superblock has the parameters of the file
system, the disk block address of the latest segment



seg 0 seg 1

...

seg n
superblock

segment
management

partial segment
logical segment

Figure 1: disk layout of the Nilfs

being written, etc. The inode block B-tree root is
stored on the latest segment, so it represents a cur-
rent valid user data tree. Superblock information is
important, and it is replicated on another block of
the disk.

full segment Each full segment consists of a fixed
length of disk blocks. This is a basic management
unit of the garbage collector.

partial segment Write units. Dirty buffers are written
out as partial segments. The partial segment does
not exceed the full segment boundaries, as shown
in detail in section 4.3.

logical segmentThe partial segment sequence includes
inseparable directory operations. For example,
shadowed part of Figure 1 is a logical segment that
consists of two partial segments. In the recovery
operations, the two partial segments are treated as
one inseparable segment.

There are two flag bits, LogicalBegin and Logi-
cal End, at the segment summary of the partial seg-
ment.

segment management blockThe block is comprised
of 50 chunks for storing segment usage informa-
tion, which is used by the garbage collector and
segment allocator. The position of the block is
fixed, so there is one replica per chunk.

There are two important fields per full segment
in segment management block, “logically previous
full segment” and “logically next full segment.”
These fields are filled by newfs tool and garbage
collector. A full segment allocation routines sim-
ply follow the “next” field. The file system recov-
ery routines (or tools such as fsck) can determine
the sequence of full segment correctly.

When the Nilfs file system is mounted, all
chunks are read for the block allocator. It takes
about one second to read one hundred chunks, dis-
tributed over the whole disk (10-msec for one head
seek operation).

The superblock and the segment management
blocks are overwritten in Nilfs.

4.2 Disk Block Management
In the local file system, there are three kinds of map-
pings. First, the file block address is mapped to the disk
block address. In traditional file systems, it is managed
by an index array in the inode structure and by indi-
rect blocks. Second, the inode numbers are mapped to
the disk block address containing the inode structures.
They placed in the permanently allocated disk blocks in
the traditional file systems. Third, the file path name is
mapped to the inode number of the file. This is known
as the directory.

The Nilfs adopts the B-tree structure for both file
block mapping and inode block mapping. The two map-
pings are implemented in the common B-tree operation
routine. It simplifies coding, is efficient for managing
big files, and keeps inode management flexible. For ex-
ample, Nilfs has no inode usage bitmap. When we need
an unused inode number, call the internal B-tree routine.
The routine looks up unused inode number as candidate
of new inode number.

There are some variations of B-tree, such as B+-tree
and B*-tree. The B+-tree is designed for the sequential
access acceleration, while B*-tree is designed for effi-
ciently using memory space. However, Nilfs adopts a
basic B-tree. The reason is as follows.

The B+-Tree is suitable for file block management.
File blocks are often accessed sequentially. Each leaf of
the B+-Tree has a pointer to another leaf on which the
address continues. On LFS, when a modified block is
moved to a new address, the pointer indicates the block
that must be rewritten. The rewritten block is also moved
to a new address, and the block pointing to the moved
block must also be rewritten. So, one modified block
results in all tree blocks being rewritten. Therefore, this
operation must not be done in the LFS. Sequential access
acceleration of the file can be achieved using the read
ahead technique.

The B-tree intermediate node is used to construct the
B-tree. It has 64-bit-wide key and 64-bit-wide pointer
pairs. The file block B-tree uses a file block address as its
key, whereas the inode block B-tree uses an inode num-
ber as its key. The root block number of the file block
B-tree is stored to the corresponding inode block. The
root block number of the inode block B-tree is stored to
the superblock of the file system. So, there is only one
inode block B-tree in the file system.

Presently, a file block B-tree is constructed for a small
(even 1 block) file. Improving the space efficiency for
small file is a future work.

File blocks, B-tree blocks for file block management,
inode blocks, and B-tree blocks for inode management
are written to the disk as logs.

A newly created file first exists only in the memory
page cache. Because the file must be accessible before



segment
summary data blocks check

point

file blocks
file

B-tree
blocks

inode blocks
inode
B-tree
blocks

Figure 2: layout of the partial segment

being written to the disk, the B-tree structure exists even
in memory. The B-tree intermediate node in memory is
on the memory page cache, the data structures are the
same as those of the disk blocks. The pointer of the B-
tree node stored in memory holds the disk block num-
ber or the memory address of the page cache that reads
the block (distinguished by MSB of the memory word).
When looking up a block in the B-tree, if the pointer of
the B-tree node is a disk block number, the disk block is
read into a newly allocated page cache before the pointer
is rewritten. The original disk block number remains in
the buffer-head structure on the page cache.

We plan to adopt the B-tree structure to construct a
directory that will keep a mapping from the path name
to the inode number. However, B-trees that use variable
length names as the key are much complicated and have
not yet been implemented. The Nilfs directory is ported
from the traditional ext2 file system. So, large directory
operation performance is not good.

4.3 Layout of the Partial Segment

In this section, we describe the details of the partial seg-
ment. Figure 2 shows the layout of a Nilfs partial seg-
ment. The partial segment consists of three parts.

segment summaryThe segment summary keeps the
block usage information of the partial segment. The
main contents are checksums of the data area, the
segment summary, the length of the partial seg-
ment, and partial segment creation time. On the
usual data access, the segment summary is not re-
ferred. It is needed by the garbage collector and file
system recovery process.

data area There are file data blocks, file data B-tree
node blocks, inode blocks, and inode block B-tree
node blocks in order.

check point A checkpoint is placed on the last tail of
the partial segment. The checkpoint includes a
checksum of the checkpoint itself. The check-
point accuracy means successfully writing the par-
tial segment to the disk. The most important in-
formation in the checkpoint is the root block num-
ber of the inode block B-tree. The block number is
written out last, and the whole file system state is

updated.

4.4 Guaranteeing Reliability

To guarantee file system reliability, which is the goal of
Nilfs, we actualized the following functions.

checksum The Nilfs stores a checksum as follows. The
segment summary maintains the checksum of the
data blocks and the segment summary. The su-
perblock and checkpoint keep their own check-
sums. The segment management block keeps its
own checksum. And finally, all checksums are cal-
culated using the CRC32 method. There are no
checksums for individual data block.

The Nilfs newfs tool generates one 32-bit ran-
dom number and stores it in the superblock. When-
ever calculating checksums, the stored number is
used as the CRC32 initial value. If there is an old
data on previously newfsed Nilfs file system, then
its checksum will not match because it is calculated
it from another initial value. The Nilfs recovery
process can find current version of checksummed
data using the random initial value.

retention of write order The Nilfs keeps writing in the
correct order. First, file data blocks are written to
the disk; next, the file data B-tree node blocks; and
then the inode blocks; and finally, the inode block
B-tree node blocks last. These block disk addresses
are assigned in order, so, the correct write order and
high write performance are both archived.

minimize overwriting The superblock, its replica, seg-
ment usage chunks, and their replicas are overwrit-
ten to update information. No other blocks are
overwritten using data modification.

These three functions guarantee the reliability of the
Nilfs file system.

5 Nilfs Implementation

5.1 Nilfs Architecture

Figure 3 shows the architecture of Nilfs. Rounded box
parts are implemented as Nilfs.

Mount/recovery operations call a buffer management
module (line (1) in Figure 3) of Linux Kernel 2.6 to read
the superblock and segment summary that wrote last
mounted time. File page operations use the Nilfs’s block
management module (2) to lookup/insert/delete appro-
priate disk blocks via the Nilfs B-tree operations. Nor-
mal file read operations execute by the file page opera-
tions module using buffer management module directly
(3). When amount of dirty pages are exceeded an in-
ternal limits, a segment construction module is triggered
(4) to start a segment construction. The segment con-
struction module calls the buffer management module



system call interface

virtual file system

file inode
ops

dir inode
ops

file page
operations

file
ops

mount/recovery
operations

GC/segment
allocator

segment
construction

block mngmt
B-tree ops
inter node

block mngmt

buffer management

page cache

Radix-tree

block I/O operations

device driveres

(3)

(4)

(1)

(6)

(2)

(5)

Figure 3: architecture of the Nilfs

(5) to arrange the dirty pages, and call block I/O opera-
tions (6) for writing out the constructed segments.

Linux Kernel parts (square box) are not modified to
implement the Nilfs.

5.2 File Buffer Management in Kernel 2.6

Reading from or writing to the usual file is done using
page cache. When reading a block from a file, it is nec-
essary to decide whether the block has already been read
to the page cache. When modifying a file, the file block
is first read to page cache. To write data to the new por-
tion of a file, a page cache is prepared first, then the data
is written to the page cache, and the page cache is writ-
ten to the disk later. The indirect blocks of the file also
use page cache, because they need to determine whether
the block exists on page cache or not, for all file read
and write operations. This must be done efficiently to
maintain read/write performance. Therefore, Linux 2.6
adopts the radix-tree structure to keep the page cache
that read the file block. The root of the radix-tree is
stored in the corresponding memory inode structure, the
tree uses the file logical block number as its index key.
On the other hand, the indirect file blocks have no log-
ical block numbers - only the physical disk block num-
ber. So, Linux 2.6 keeps the page caches of the indirect
blocks in the radix tree, whose root is in an inode of the
block device (bdinode). All page caches that keep the
indirect block data of all files in the file system are reg-
istered to the radix-tree.

5.3 Nilfs Data Structure in Memory
We decided not to modify the Linux kernel, block device
input/output, page cache management, or system call ex-
ecution.

With Nilfs, the newly created B-tree intermediate
node block has no disk block number, so bdinode’s
radix tree does not retain the corresponding page cache.
Therefore, we used the buffer-head memory address of
the page cache as the radix-tree’s key. The radix-tree for
the B-tree’s intermediate node is stored to the memory
of the corresponding inode structure. Consequently, the
Nilfs radix tree is smaller than the Linux radix tree.

5.4 Segment Construction
The data write process started by the sync system call
and Nilfs kernel thread, advances in the following order.

1. Lock the directory operations
2. The dirty pages of the file data are gathered from its

radix-tree.
3. The dirty B-tree intermediate node pages of both

file block management and inode management are
gathered.

4. The dirty inode block pages are gathered.
5. The B-tree intermediate node pages which will be

dirty for registered block address being renew are
gathered. See Section??

6. New disk block addresses are assigned to those
blocks in order of file data blocks, B-tree node
blocks for file data, inode blocks, B-tree node
blocks for inodes.

7. Rewrite the disk block addresses to new ones in the
radix-tree and B-tree nodes.

8. Call block device input/output routine to writing
out the blocks

9. Unlock the directory operations

In order to comply with POSIX semantics, directory
operations must be exclusively executed. The segment
construction operation relates to the whole file system,
the directory operations are locked during the construc-
tion operation.

5.5 Snapshot
The Nilfs snapshot is a whole consistent file system at
some time instant. The snapshot is very useful for mak-
ing a backup of the file system, and being rolled back
to previous state after modifying many files in the file
system. In LFS, all blocks remain as is (until they are
collected by garbage collection), therefore, no new in-
formation is needed to make a snapshot. In Nilfs, the B-
tree structure manages the file and inode blocks, and B-
tree nodes are written out as a log too. So, the root block
number of the inode management B-tree is the snapshot
of the Nilfs file system. The root block number is stored



in the checkpoint position of a partial segment. The Nilfs
checkpoint is the snapshot of the file system itself. Actu-
ally, user can specify the disk block address of the Nilfs
checkpoint to Linux using the “mount” command, and
the captured file system is mounted as a read-only file
system.

However, when the user use all checkpoints as the
snapshot, there is no disk space for garbage collection.
The user can select any checkpoint as a snapshot, and
the garbage collector collects other checkpoint blocks.
The user does not need any commands “before” taking a
snapshot.

6 Conclusion
We described overview of the design and implemen-
tation of “Nilfs” and implemented LFS using modern
technology to get a high performance file system.

References
[1] John Ousterhout and Fred Douglis. Beating the

I/O bottleneck: a case for log-structured file sys-
tems. ACM SIGOPS Operating Systems Review,
23(1):11–28, 1989.

[2] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indexes.Acta Informatica,
1(3):173–189, 1972.

[3] Douglas Comer. The ubiquitous B-tree.ACM Com-
puting Surveys, 11(2):121–138, 1979.


